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In this paper, we derive a coupled Schrödinger drift–diffusion self-consistent sta-
tionary model for quantum semiconductor device simulations. The device is decom-
posed into a quantum zone (where quantum effects are expected to be large) and
a classical zone (where they are supposed negligible). The Schrödinger equation is
solved for scattering states in the quantum zone while a drift–diffusion model is used
in the classical zone. The two models are coupled through interface conditions which
are derived from those of N. Ben Abdallah (1998, J. Stat. Phys. 90, 627) through a
diffusion approximation. Numerical tests in the case of a resonant tunneling diode
illustrate the validity of the method. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this work, we present a hybrid classical–quantum stationary model for electron trans-
port in one-dimensional semiconductor devices. We are aiming at devices which exhibit a
well-localized quantum region, while the rest of the device behaves classically. Examples
of such devices are the resonant tunneling diodes.

Resonant tunneling diodes are such that a narrow potential well is flanked by two potential
barriers, themselves imbedded in the low-doped region of a unipolar diode. These structures
exhibit a resonant quantum state inside the barrier. By tuning the applied bias, it is possible
to line up the Fermi level (which represents the typical energy of the electrons in the source
contact) with the resonant energy. In such a configuration, quantum tunneling increases the
transmission current, as opposed to configurations where the Fermi energy and the resonant
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state are off-line. Therefore, this kind of device exhibits nonmonotonous current-voltage
characteristics, which are of great interest for logic applications.

In a resonant tunneling diode, it is expected that quantum effects are localized in the
vicinity of the double barriers, while transport in the access zones (the highly doped regions
connected with the contacts) and the area downstream from the double-barrier is mainly
classical. Therefore, it seems attractive to develop a hybrid model which provides a complete
quantum description of the physics wherever necessary but degenerates to a semiclassical
model when quantum effects are negligible. The aim of the present work is to describe such
a coupling methodology.

The fact is that quantum transport simulations are complex and computationally expen-
sive. They require the self-consistent resolution of a quantum transport model with the
Poisson equation. Much effort has been devoted to the Wigner equation (see the review in
[22] and references therein, and also [27, 31]). Simplified models make use of a semiclassical
approximation of the charge density [33].

It is not an easy matter to incorporate particle scattering in quantum transport simula-
tions. Many theoretical approaches have been proposed (see, e.g., [1, 10, 19, 30, 37]). Yet
no agreement on the model has been reached to date. Stationary scattering models have
successfully predicted the collision-dominated regime [13, 20, 43] but cannot handle the
collisionless regime. A related approach is based on the Pauli master equation (see, e.g.,
[21, 28]) but requires negligible quantum correlations, which is sometimes questionable.
Some authors simply use the semiclassical electron–phonon collision term in the Wigner
equation [22, 31], even though the Wigner function is not always positive. The full quantum
treatment of electron–phonon interaction is very computationally demanding [26]. Quan-
tum hydrodynamics and quantum drift–diffusion models have been investigated (e.g., in
[12] and [34], respectively), but information is lacking about what an equation-of-state for
quantum electron gases should be.

Semiclassical models are computationally far less expensive than quantum ones and
have been practiced for years now (see, e.g., [38] and references therein). Using a hybrid
classical–quantum approach allows us to shrink the size of the quantum system to be
simulated and therefore reduces the overall cost of the simulation. Furthermore, collisions
are easily included in semiclassical models [38]. If the quantum region is small enough,
using a collisionless model in this region may be an acceptable approximation, which is
justified as long as the electron transit time does not exceed the mean collision time. This
is usually the case in many practical situations. Therefore, it is often accurate enough to
use a collisional model in the classical region and a collisionless model in the quantum
region. This is the option we take in the present work. Note that similar hybrid approaches
have already been proposed in the literature (see, e.g., [32], and more recently [4, 9]). Our
approach differs from these in the choice of either the models or the coupling methodology.

In the present work, we use a drift–diffusion model in the classical zone. Such models
can be derived from semiclassical kinetic models under the assumption of small mean free
path and are valid when collisions dominate over all other transport effects. Therefore, our
model in the classical zone is a highly collisional one.

This derivation is based on the diffusion approximation method, which has been widely
used in various physical contexts (see, e.g., [3, 8, 29] in the context of neutron transport, [2]
for radiative transfer, [5, 25, 35] for semiconductors, and [16] for plasmas). This approach
also allows us to derive adequate boundary conditions (i.e., taking into account the kinetic
boundary layer; see, e.g., [3, 16]) or interface conditions (see, e.g., [17] for semiconductor
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heterojunctions). We rely on this procedure to derive our coupling conditions between the
classical and quantum regions.

Our starting point is a hybrid kinetic–quantum model derived by Ben Abdallah [4].
In this model, the scattering states and amplitudes of the quantum region are obtained
from the Schrödinger equation, while, in the classical region, the Boltzmann transport
equation is solved for the semiclassical distribution function. At the classical–quantum
interface, the distribution function satisfies reflection–transmission conditions depending
on the quantum scattering amplitudes and is used as an “alimentation function” to construct
the quantum density matrix and charge concentration. The potential is linked to the classical
and quantum charge concentrations by the Poisson equation. This coupling model is current-
preserving through the classical–quantum interface, which is an important check of its
physical consistency.

In the present paper, we proceed to a diffusion approximation of Ben Abdallah’s [4] model
and replace the Boltzmann equation together with its reflection–transmission conditions at
the interface by a drift–diffusion model with adequate connection conditions. The key point
and novelty of the present work is in the derivation of these connection conditions. For that
purpose, we use kinetic boundary layer analysis, according to [3] and [17]. The rest of Ben
Abdallah’s [4] model (mainly the treatment of the quantum region and the Poisson equation)
is left unchanged.

In our one-dimensional model, we consider a device occupying the interval [0, L], in
which the quantum zone Q = [x1, x2] (with 0 < x1 < x2 < L) is sandwiched between two
classical zones C = [0, x1] ∪ [x2, L]. The coupling of the drift–diffusion model in the C zone
with the quantum model in the Q zone is realized through connection conditions relating
the drift–diffusion unknowns (namely the electron density n and the current density j) at
the two interface points x1 and x2. These conditions are

j (x1) = j (x2) := j, (1.1)

n(x1)e
−V (x1)/Uth − n(x2)e

−V (x2)/Uth = θQ j, (1.2)

where θQ is a constant which depends on the scattering amplitudes of the quantum poten-
tial. In the above relation, Uth = kB T/e is the thermal potential (kB being the Boltzmann
constant, T the lattice temperature, and e the elementary (positive) charge). Relation (1.2)
can be equivalently written as a jump relation for the quasi Fermi levels ϕn = Uth ln n − V :

eϕn(x1)/Uth − eϕn(x2)/Uth = θQ j. (1.3)

That the current conservation relation (1.1) should hold is physically obvious. Similarly,
at equilibrium (when j = 0), (1.3) imposes the continuity of the Fermi level, as it should.
However, away from equilibrium, (1.3) states that the jump of the (exponential of the)
Fermi levels should be proportional to the current through the structure. The proportionality
coefficient θQ is where the quantum scattering amplitudes enter, and it must therefore be
accurately determined and computed. The core of the present paper is to discuss this point.
Then, as in [4], the classical density at the interface determines a charge concentration in
the quantum region. This, together with its counterpart in the classical region, is used in the
Poisson equation for the computation of the self-consistent potential.

The paper is organized as follows. The overall model is introduced in Section 2, without
details about its derivation. The numerical method and results are displayed and discussed
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in Section 3, and a conclusion follows in Section 4. Sections 5 to 8 are appendices which
provide more details about the derivation of the model: Section 5 recalls the main steps of the
passage from the Boltzmann equation to the drift–diffusion model. In Section 6, we derive
the transmission condition from the layer analysis of the kinetic model. Sections 7 and 8
provide two methods for calculating the coefficient θQ which appears in the transmission
condition.

2. PRESENTATION OF THE METHOD

2.1. The Quantum Region

We consider a device occupying the interval 
 = [0, L], in which the quantum zone Q =
[x1, x2] (with 0 < x1 < x2 < L) is sandwiched between two classical zones C = [0, x1] ∪
[x2, L]. Let us first assume that the electric potential V (x) is given and known throughout
the structure 
 and let us concentrate on the quantum model in the Q region. For that
purpose, we define a potential Ṽ which coincides with the potential V inside the quantum
zone Q and is extended by continuity into constant functions outside Q:

Ṽ (x) =




V1 := V (x1) x ≤ x1

V (x) x1 ≤ x ≤ x2

V2 := V (x2) x ≥ x2.

(2.1)

From now on, we shall suppose that V2 > V1 to fix the ideas and note δV = V2 − V1. The
effective mass m(x) is allowed to be position dependent in the quantum zone Q but is
constant in C and has the same value in [0, x1] and [x2, L]. We denote this common value
by m.

As a quantum model for the Q region, we actually consider the Schrödinger equation
over the full real line R in the potential Ṽ . More precisely, we introduce the scattering states
ψp, p ∈ R, solutions of

−h̄2

2

d

dx

(
1

m(x)

dψp

dx
(x)

)
− eṼ (x)ψp = (E p − eVb)ψp, (2.2)

where h̄ is the reduced Planck constant. In particular, p > 0 stands for the right-going
scattering states, while p < 0 points at the left-going scattering states. Vb is the value of the
potential at the upstream boundary of Q, namely,

Vb = V (x1) for p > 0, Vb = V (x2) for p < 0,

while E p is the energy of the corresponding state measured with origin of energies at Vb:

E p = p2

2m
.

Consequently, measured relative to the absolute origin of energies, E p − eVb is the total
energy of the corresponding scattering state.
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The scattering states are uniquely defined as solutions of (2.2) together with the following
conditions for p > 0:

ψp(x) = exp
i p(x − x1)

h̄
+ r(p) exp

−i p(x − x1)

h̄
, x < x1, (2.3)

ψp(x) = t (p) exp

(
i

h̄
p+(p)(x − x2)

)
, x > x2. (2.4)

And for p < 0:

ψp(x) = exp
−i p (x − x2)

h̄
+ r(p) exp

i p(x − x2)

h̄
, x > x2, (2.5)

ψp(x) = t (p) exp

(
− i

h̄
p−(p)(x − x1)

)
, x < x1, (2.6)

where

p+(p) = (p2 + 2em δV )1/2, p−(p) = (p2 − 2em δV )1/2.

Note that for −pδ ≤ p ≤ 0 with pδ = √
2emδV , p−(p) is a pure imaginary number. The

coefficients r(p) and t (p) are, respectively, the reflection and transmission amplitudes.
They are explicitely given in terms of the solution by:

r(p) = 1

2

(
ψp + ih̄

p

∂ψp

∂x

)
(x1), t (p) = ψp(x2), for p > 0,

r(p) = 1

2

(
ψp − ih̄

p

∂ψp

∂x

)
(x2), t (p) = ψp(x1), for p < 0.

It should also be noticed that finding the scattering states is equivalent to finding solutions of
the Schrödinger equation (2.2) on the bounded interval [x1, x2] with the following boundary
conditions (as the convenient combination of Eqs. (2.3), (2.4) (for the right-going states)
and (2.5), (2.6) (for the left-going states) would show). For p > 0:

ψ ′
p(x1) = 2i p

h̄
− i p

h̄
ψp(x1), ψ ′

p(x2) = i

h̄
p+(p)ψp(x2). (2.7)

For p < 0:

ψ ′
p(x1) = − i

h̄
p−(p) ψp(x1), ψ ′

p(x2) = −2i p

h̄
+ i p

h̄
ψp(x2). (2.8)

The reflection and transmission coefficients R(p) and T (p) are defined by:

R(p) = |r(p)|2, T (p) = p±(p)|t (p)|2/p, ±p > 0.

We recall that

T (p) + R(p) = 1, i = 1, 2, p ∈ R,
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and that R(p) = 1 for −pδ ≤ p ≤ 0. We also recall the reciprocity relation:

T (p) = T (−p+(p)), ∀p > 0, T (p) = T (p−(p)), ∀p < −pδ. (2.9)

We finally note that p+(p−(p)) = p−(p+(p)) = p, whenever the terms are defined.
Let us temporarily assume that the distribution function f (x, p) (where x ∈ C is the

position and p ∈ R is the momentum) in the classical zone C = [0, x1] ∪ [x2, L] is known.
Its values f (x1, p) for p > 0 and f (x2, p) for p < 0 correspond to particles entering the
quantum region Q. Following [4], we use these values as an “alimentation function,” to
construct a quantum density matrix in Q,

ρQ(x, x ′) = N−1

( ∫
p>0

f (x1, p)ψp(x)ψp(x ′) dp

+
∫

p<0
f (x2, p)ψp(x)ψp(x ′) dp

)
, x, x ′ ∈ Q, (2.10)

as well as the electron density n(x):

n(x) =
∫

p>0
f (x1, p)|ψp(x)|2 dp +

∫
p<0

f (x2, p)|ψp(x)|2 dp, x ∈ Q. (2.11)

The number N is the total number of particles in the Q region,

N =
∫ x2

x1

n(x) dx,

so that the density matrix ρQ is of unit trace. From ρQ , all physical observables can be
computed, such as the particle current:

j = h̄

( ∫
p>0

f (x1, p)�m

(
1

m(x)

∂ψp

∂x
(x)ψp(x)

)
dp

+
∫

p<0
f (x2, p)�m

(
1

m(x)

∂ψp

∂x
(x)ψp(x)

)
dp

)
, x ∈ Q. (2.12)

We now turn to the description of the model in the classical region.

2.2. The Classical Region

As we noted above, the classical region is disconnected. In the open intervals C1 = (0, x1)

and C2 = (x2, L), we solve the stationary drift–diffusion model

d j

dx
= 0, (2.13)

j = −D(x)

(
dn

dx
− n

d

dx

(
V

Uth

))
, (2.14)

where n(x), j (x) now denote the electron number and momentum densities in the classical
region, Uth = kB TL/e is the thermal potential (kB being the Boltzmann constant, TL the
lattice temperature, and e the elementary positive charge), and D(x) is the diffusivity. We
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note that according to Einstein’s relation, the mobility is supposed equal to D/Uth. We
assume that the temperature TL is uniform over the structure.

The two open sets Ci are connected each one with each other through the conditions

j (x1) = j (x2) := j, (2.15)

n(x1)e
−V (x1)/Uth − n(x2)e

−V (x2)/Uth = θQ j, (2.16)

where the number θQ > 0 depends on the reflection–transmission coefficients R(p) and
T (p) of the quantum region. We describe this relation in detail below. For the time being,
we complete the description of the coupling of the classical and quantum regions.

First, we supplement the problem with Dirichlet boundary conditions at x = 0 and x = L ,

n(0) = nD(0), n(L) = nD(L), (2.17)

where nD(x), x ∈ [0, L] is the doping concentration, i.e., the concentration of positively
ionized impurities. It is easy to show that Eqs. (2.13) and (2.14), together with transmission
conditions (2.15) and (2.16) and boundary condition (2.17), are well-posed, i.e., they have a
unique solution, as soon as θQ is nonnegative. From the density, we construct a distribution
function in the C region by assuming that the momentum dependence is Maxwellian;

f (x, p) = n(x)M(p), M(p) = 1√
2π pth

exp− p2

2p2
th

, x ∈ C, p ∈ R, (2.18)

where pth = √
mkB TL is the thermal momentum. This is the distribution function to be used

as an alimentation function in formulae (2.10)–(2.12) for the quantum region.
Finally, the potential V (x) is a solution of the Poisson equation

−dV

dx

(
ε(x)

dV

dx

)
= e(nD(x) − n(x)), x ∈ 
, (2.19)

with the boundary conditions

V (0) = 0, V (L) = VL , (2.20)

where VL > 0 is the total applied bias, and ε(x) is the material permittivity. In (2.19), the
density n(x) is equal to the classical density (solution of the drift–diffusion problem (2.13),
(2.14)) in C and to the quantum density (2.14) in Q.

A solution algorithm for the problem is the following. First, let a first guess of the potential
V be given. We compute the scattering states ψp and the reflection-coefficients R(p), T (p)

of the quantum region Q in the potential Ṽ . Then, a value of the coupling constant θQ

is deduced, which allows us to solve the drift–diffusion problem with the transmission
conditions (2.16). An alimentation function is deduced from (2.18), which, together with
the scattering states, allows us to construct a quantum density according to (2.11). Then, the
Poisson equation can be solved for an updated value of the potential and the iteration can
be continued. We shall see that this is not the most efficient way to conduct the iterations.
However, this simple picture gives an intuitive idea of how the various parts of the model
are related.
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2.3. The Extrapolation Coefficient θQ

We now describe how θQ is obtained. We note that it has the physical dimension of
the inverse of a velocity. It is sometimes called the extrapolation coefficient [3]. To define
θQ , we must go back to the kinetic description of the classical zone, as proposed by Ben
Abdallah [4].

2.3.1. From Kinetic to Drift–Diffusion Models

In the model of [4], the distribution function f (x, p), x ∈ C , p ∈ R solves a Boltzmann
equation,

p

m

∂ f

∂x
+ e

dV

dx

∂ f

∂p
= Q( f ), x ∈ C, p ∈ R, (2.21)

where Q( f ) is the collision operator. We consider a very simplified model for the lattice
defects collision operator and we neglect electron–electron collisions as well as degeneracy
effects. This operator is written [35]

Q( f )(p) =
∫

R

S(x, p, p′)(M(p) f (p′) − M(p′) f (p)) dp′, (2.22)

where M is the Maxwellian given by (2.18). Note that
∫

M(p) dp = 1. The function S is
related to the collision transition rate and is supposed symmetric and positive: S(x, p, p′) =
S(x, p′, p), S ≥ 0. In many practical applications, it is supposed constant with respect to p
and p′;

S(x, p, p′) = τ(x)−1, (2.23)

where τ(x) is the mean time between collisions, possibly depending on x through the
material properties. In this case, the diffusivity of the drift–diffusion model is given by

D(x) = τv2
th, vth =

√
kB TL

m
, (2.24)

where vth is the thermal velocity.
For a general transition rate S, the formula for the diffusivity is more involved. We first

recall that Q, on a convenient function space, is a self-adjoint operator with null space of
dimension one, spanned by the Maxwellians. Its range is characterized by functions with
zero momentum average. Therefore, for a given function g, the equation

Q( f ) = g (2.25)

is uniquely solvable in f provided that g satisfies
∫

g(p) dp = 0 and that f is searched for
among functions such that

∫
f (p) dp = 0. By abuse of notation, we denote by f = Q−1(g)

this unique solution. Now, we let

h = −Q−1

(
p

m
M(p)

)
, (2.26)
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which is well defined since the function pM is odd. The diffusivity is given in terms of h
by

D(x) =
∫

p∈R

p

m
h(p) dp (2.27)

and depends on x since Q, and therefore h, may depend on it. All the above statements are
made precise in Section 5.

The first two terms of the expansion of f in powers of the scaled mean free path α (α
being defined as the ratio of the collision mean free path to the characteristic length of the
device, see Section 5) are given by

f = f 0 + α f 1 + O(α2), f 0 = n(x, t)M(p), f 1 = �(p) j, (2.28)

with

�(p) = h(p)

D
, (2.29)

n being the solution of the drift–diffusion equation. The function � measures the first-order
response of the system to deviations from global equilibrium, which occurs when gradients
of n or V are present.

2.3.2. The Transmission Conditions through the Quantum Zone at the Kinetic Level

In [4], the kinetic model (2.21) is coupled with the quantum model described in Section 2.1
through the following interface conditions relating the values of the distribution function at
x1 and x2:

f (x1, p) = R(−p) f (x1, −p) + T (−p+(p)) f (x2, −p+(p)), p < 0, (2.30)

f (x2, p) = R(−p) f (x2, −p) + T (p−(p)) f (x1, p−(p)), p > pδ, (2.31)

f (x2, p) = f (x2, −p), 0 < p < pδ. (2.32)

Conditions (2.30)–(2.32) find an easy interpretation. Consider for instance (2.30). It states
that particles entering C at x1 (which contribute to building up f (x1, p) for p < 0) are either
particles which have exited C at x1 with momentum −p and have undergone a reflection
by Q (with probability R(−p)), or particles which have exited C at x2 with momentum
−p+(p) and have been transmitted through Q (with probability T (−p+(p))). A similar
interpretation is valid for f (x2, p) for p > pδ , leading to (2.31). For 0 < p < pδ , there is
no particle transmitted from x1 (note that p−(p) is a pure imaginary number), so that only
reflection occurs, leading to (2.32). In view of the reciprocity condition (2.9), we can rewrite
(2.30)–(2.32) according to

B( f1, f2) = 0, (2.33)

where fi (p) := f (xi , p) and the linear operator B is defined by:

B( f1, f2)(p) =




f1(p) − (R(−p) f1(−p) + T (−p) f2(−p+(p))), p < 0,

f2(p) − (R(−p) f2(−p) + T (−p) f1(p−(p))), p > pδ,

f2(p) − f2(−p), 0 < p < pδ.

(2.34)
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The particle flux for the kinetic model is given by:

j (x) =
∫

R

f (x, p)
p

m
dp. (2.35)

It is proved in [4] that the transmission condition (2.33) is current-preserving, i.e.,

jK (x1) = jK (x2). (2.36)

Moreover, the kinetic and quantum fluxes coincide at the interface. Namely,

jK (x1) = jQ(x1), jK (x2) = jQ(x2),

where jQ is given by (2.12).
Another noticeable property of the operator B is that two Maxwellians fi = ni M(p)

satisfy the transmission condition (2.33) if and only if the ni ’s are linked through

n1e−V1/Uth − n2e−V2/Uth = 0. (2.37)

2.3.3. Definition of the Extrapolation Constant θQ

To proceed in the definition of θQ , we need to introduce an auxiliary problem (often
referred to as a Milne problem [3]). First, define �i (p) = �(xi , p), i = 1, 2, with � given by
(2.29). We search for two functions θ1(x, p) and θ2(x, p) respectively defined for (x, p) ∈
(−∞, 0] × R and [0, ∞) × R, solutions of the problem

p

m

∂θi

∂x
= Qi (θi ), p ∈ R, x ∈ �i , (2.38)

where �1 = (−∞, 0) and �2 = (0, ∞), and satisfying

B(θ1(0, p) − �1(p), θ2(0, p) − �2(p)) = 0. (2.39)

In Section 6, it is shown that problem (2.38), (2.39) has a solution (θ1, θ2), such that θi M−1

is bounded on �i . Moreover, this solution is unique up to the addition of a Maxwellian.
More precisely, if (θ1, θ2) and (θ ′

1, θ
′
2) are two solutions, then there exist two real numbers

n1, n2 related by relation (2.37) such that

(θ ′
2 − θ2)(x, p) = n2 M, ∀x ∈ �2, (θ ′

1 − θ1)(x, p) = n1 M, ∀x ∈ �1.

Furthermore, θi (x, p) converges towards a Maxwellian when |x | tends to infinity, with
exponential rate. Let n∞

θi
be the density associated with this Maxwellian; i.e.,

θi (x, p) → n∞
θi

Mi when |x | → ∞, x ∈ �i .

Then, the real number

θQ = e−V2/Uth n∞
θ2

− e−V1/Uth n∞
θ1

, (2.40)

does not depend on the chosen solution. This is the number to be used in (2.16).
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To understand this construction, it should be noted that the leading order term f 0 of
the Hilbert expansion (2.28), being Maxwellian, exactly satisfies the kinetic transmission
condition (2.33) as soon as the densities are related by (2.37). However, this is not the case
of the first-order corrections f 1 in the expansion (2.28), because � is not a Maxwellian.
This means that a layer corrector must be defined. This layer term is defined in terms of
the functions θi . The transmission condition then applies to the asymptotic limits θi , which
explains the occurrence of the number θQ .

2.4. Approximate Analytical Formulae for θQ

In general, there exist no exact analytical formulae for θQ . However, for the numerical
efficiency of the whole procedure, it is important to find approximate analytical formulae.
Indeed, a complete numerical integration of problem (2.38), (2.39) at each iteration step of
the algorithm would be extremely costly. We present two approximate formulaes for θQ .
The first one is based on an approximation of the albedo operator; the second one is based
on an iterative procedure first proposed by Golse and Klar [24].

2.4.1. Approximation of the Albedo Operator

The albedo operator is defined the following way. Let χ+
0 (p) be a function defined for

p > 0 and consider the problem of finding a function χ(x, p) for (x, p) ∈ [0, ∞) × R such
that

p

m

∂χ

∂x
= Q(χ), χ(0, p) = χ+

0 (p) for p > 0. (2.41)

In (2.41), the boundary condition only specifies χ for incoming momenta (i.e., correspond-
ing to particles entering the domain [0, ∞)), hence the restriction p > 0. From [35], there
exists a unique solution χ such that M−1χ is bounded on [0, ∞) × R. Furthermore, this so-
lution has vanishing flux (

∫
χ(x, p)p dp = 0 for all x > 0) and converges to a Maxwellian

χ∞M(p) as x → ∞ with an exponential rate. The albedo operator A maps the known
incoming boundary condition χ+

0 to the unknown outgoing distribution function χ(0, p)

for p < 0, which will be denoted by χ−
0 (p):

(Aχ+
0 )(p) = χ−

0 (p), p < 0.

The albedo operator is a useful tool in the investigation of problem (2.38), (2.39) [17].
Albedo problems have been systematically studied in [11].

In the present section, in order to find an approximation of θQ , we suppose that the albedo
operator maps any function to a Maxwellian, i.e.,

χ−
0 (p) = n−

χ M(p), p < 0,

where the constant n−
χ is related to χ+

0 by the zero flux condition:

n−
χ

∫ ∞

0
Mp dp =

∫ ∞

0
χ+

0 (p)p dp. (2.42)

This approximation can be justified by the very fast relaxation of the solution towards a
Maxwellian. It is used in a large number of practical applications [23]. If this approximation
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is valid, the solutions θi of (2.38), (2.39) satisfy

θ1(0, p) = n−
θ1

M(p) for p > 0, θ2(0, p) = n−
θ2

M(p) for p < 0, (2.43)

where θ−
i are constants related with θi through a relation like (2.42).

Using the conservation properties of the Milne problem, it is possible to derive the
following formula, later refered to as the “albedo” approximation formula:

θQ ≈ θ̄a
Q = 2

∫ ∞

0

(
(�2)

2e−V2/Uth + (�1)
2e−V1/Uth

) p

m

dp

M

+ e−V1/Uth

( ∫ ∞

0
T M

p

m
dp

)−1(
1 −

∫ ∞

0
[�1(p) + �2(p+(p))]T

p

m
dp

)2

− e−V1/Uth

∫ ∞

0
[�1(p) + �2(p+(p))]2T

p

m

dp

M
. (2.44)

The proof of formula (2.44) can be found in Appendix C, Section 7. We also show
that

θ̄a
Q > 0. (2.45)

In the case of a relaxation time operator ((2.22) with (2.23)), �i is independent of τ , and
thus of i . It is given by

�i = p

kB TL
M. (2.46)

The leading contribution to θ̄a
Q is the second term, which contains the reciprocal of

∫
T M

(p/m) dp. Indeed, because the transmission resonance is very sharply peaked, only a very
small interval of momenta gives rise to a nonzero contribution to the integral. Therefore,
the integral is very small and its reciprocal is large.

2.4.2. Iterative Procedure of Golse–Klar

The approximation (2.44) is not an approximation in the usual sense since it cannot be
improved in an obvious way by tuning some numerical parameter. The method of Golse–
Klar [24] does not have this drawback since it can be viewed as a first step of an iterative
procedure which, at least formally, converges to the solution of the Milne problem. However,
we stop the iterations after either the first or second steps, as we wish to keep analytically
tractable formulas. The method is more easily presented in the case of a constant transition
rate (2.23). The iterative method and the computations are presented in detail in Section 8.
Here, we only display the result,

θQ ≈ θ̄ M
Q = e−V1/Uthϑ1, (2.47)

θQ ≈ θ̄G K
Q = e−V1/Uth(ϑ1 + ϑ2), (2.48)

ϑ1 =
( ∫ ∞

0
T M

p

m
dp

)−1(
1 −

∫ ∞

0
[�1(p) + �2(p+(p))]T

p

m
dp

)
, (2.49)
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ϑ2 =
( ∫ ∞

0
T M

p

m
dp

)−1[
− ϑ1

∫ ∞

0
T M F0

p

m
dp

−
∫ ∞

0
T [�1(p) + �2(p+(p))]F0

p

m
dp + 2e−δV/Uth

∫ pδ

0
�2 F+(p)

p

m
dp

+ 2
∫ ∞

0

[
e−δV/Uth�2(p+(p))F+(p+(p)) + �1(p)F(p)

] p

m
dp

]
, (2.50)

where

F(p) =
(

p2

p2
th

− 1

)∫ ∞

0

T (p′)M(p′)
p′ + p

p′ dp′, (2.51)

F+(p) =
(

p2

p2
th

− 1

)∫ ∞

0

T (p′)M(p′)
p+(p′) + p

p′ dp′, (2.52)

F0(p) = e−δV/Uth F+(p+(p)) + F(p). (2.53)

The approximate value θ M
Q is often referred to as the Marshak approximation. The more

precise approximate value θG K
Q will be referred to as the Golse–Klar approximation. In the

case of a relaxation time operator ((2.22) with (2.23)), �i is given by (2.46). For the same
reason as for the albedo approximation, the leading order contribution to θQ is ϑ1. This is
why the numerical simulations (and particularly the current–voltage characteristic) show
no difference between the Marshak and the Golse–Klar approximations (see below, Fig. 2).

3. DISCRETIZATION OF THE PROBLEM AND NUMERICAL RESULTS

We now solve the Schrödinger equation (2.2) on the bounded interval [x1, x2] with bound-
ary conditions (2.7) (for p > 0) and (2.8) (for p < 0). Here we treat the case p > 0 (the
case p < 0 can be solved in the same way). First we remark that this system is equivalent to

d

dx

(
1

m
y′(x)

)
= − 2

h̄2 (E1 + e(V (x) − V1))y(x), (3.1)

y(x2) = 1, y′(x2) = i

h̄
p+(p). (3.2)

ψ is related to y by ψ = γ y, where γ = 2i p(h̄ y′(x1) + i py(x1))
−1.

We discretize problem (3.1), (3.2) by introducing a regular mesh of step ξi = i�x and
setting yi ≈ y(ξi ). We obtain the discrete problem

1

�x

(
1

mi+ 1
2

y′
i+ 1

2
− 1

mi− 1
2

y′
i− 1

2

)
= − 2

h̄2 (E + e(Vi − V1))yi , (3.3)

with y′
i+ 1

2
= (yi+1 − yi )/�x and ξi+ 1

2
= ξi + �x/2, mi+ 1

2
≈ m(ξi+ 1

2
). The matching con-

ditions for ψ across a heterojunction interface (where m is discontinuous) are

ψ− = ψ+,
1

m−

(
dψ

dx

)−
= 1

m+

(
dψ

dx

)+
,

where ψ−, ψ+, (dψ/dx)−, and (dψ/dx)+ denote the values of the wave-function and its
derivatives on the left- and right-hand sides of the heterojunction, respectively. We deduce
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that the equation

1

�x2

(
1

mi+ 1
2

yi+1 −
(

1

mi+ 1
2

+ 1

mi− 1
2

)
yi + 1

mi− 1
2

yi−1

)
= f (ξi , yi ), (3.4)

with

f (x, y(x)) = − 2

h̄2 (E1 + e(V (x) − V1))y(x)

must be solved.
We use Stoermer’s method [36], which consists in writing

�i = (yi+1 − yi )/�x, i = 0, . . . , N − 1,

�N = y′(x2) − m

2
�x f (x2, y(x2)).

We note that, in view of (3.2), �N is a known quantity. Then, we have the iterations

�i =
mi− 1

2

mi+ 1
2

�i+1 − mi− 1
2
�x fi−1,

yi = yi+1 − �i�x,

y′
0 = y′(x1) = �1 − m

�x

2
f0,

which allow us to compute �i and yi recursively. We also need the expression of m(x)−1

(∂ψ/∂x) in order to compute the quantum current from (2.12). We use the equation

(
1

m
y′

)
i

= 1

2

(
1

mi+ 1
2

�i+1 + 1

mi− 1
2

�i

)
, (3.5)

which, together with a standard quadrature formula, allows us to compute (2.12) numerically
and to obtain an approximation of JQ .

In order to solve the drift–diffusion equation, we choose the quasi-Fermi level formulation
(V, ϕ), where ϕ is given by

n(x) = n(0) exp

(
V − ϕ

Uth

)
. (3.6)

The continuity equation becomes

d J

dx
= 0, J = D

Uth

dϕ

dx
n(x). (3.7)

We obtain the boundary conditions for ϕ by imposing (2.17).
The drift–diffusion equations are solved by a classical finite volume approach, which for

one-dimensional problems coincides with the famous box method (see, e.g., [41]). Using
the Gummel approach [41], the Poisson equation is solved iteratively according to

− d

dx

[
ε(x)

d

dx
V �+1(x)

]
− q

n�+1

Uth
(V �+1 − V �) = q(nD(x) − n�+1(x)), (3.8)
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FIG. 1. The RTD geometry of [33].

where � is the iteration index. The initial guess V 0 for the potential corresponding to the first
bias is given by a linear function between 0 and L . We compute the solutions corresponding
to a sequence of applied biases in increasing order. Once the solution for a given bias is
computed, it is used as an initial guess in the iterations (3.8) for finding the next bias.

Gummel’s method allows us to decouple the equations. Poisson’s equation is solved
first. Then, the obtained potential is substituted into the Schrödinger equation. From the
reflection and transmission coefficients, the extrapolation constant θQ is computed. Then,
the continuity equation (3.7) is resolved. The resulting density is then substituted back into
Poisson’s equation and the procedure is repeated until convergence is reached.

We shall consider two examples of resonant tunneling diode (RTD) structures dealt with
in the literature. The first one has been treated by Mounaix et al. in [33]. The second one can
be found in a paper by Kluksdahl et al. in [27]. The RTD geometry of Mounaix et al. [33]
is depicted in Fig. 1. It is composed of a 5-nm undoped GaAs quantum well sandwiched
between two 5-nm undoped Al0.3Ga0.7As tunnel barriers. The double-barrier heterostructure
is placed between two undoped thin cladding layers 2.5 nm in width and two 50-nm GaAs
spacer layers with doping densities of 2 1022 m−3. Each GaAs contact layer is 500 nm wide,
leading to a total device length of L = 1120 nm.

The physical quantities are chosen as follows. The double barrier height H is of 0.23 eV.
The electron effective masses (relative to the vacuum electron mass) are given in Table I
(where the indices 1 and 2 respectively refer to GaAs and Al0.3Ga0.7As layers). The relative
permittivity ε is constant througout the structure and is also given in Table I.

At room temperature T = 300 K, the mean collision time τ , the diffusitivity D, and the
mean free path λ = τvth (with vth given by (2.24)) are given in Table II below.

The mesh size is�x = 0.1 nm in the quantum zone and�x = 0.5 nm in the classical zone.
We compute the scattering states of the Schrödinger equation for momenta p corresponding
to energies up to 15 kB T . They serve in the computation of the density n(x) in the quantum
zone Q and of the extrapolation constant θQ .

TABLE I

Masses and Permittivity

m1 m2 ε

0.067 0.092 12.4
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TABLE II

Mean Collision Time τ , Diffusitivity D,

and Mean Free Path λ

τ [s] D [s−1 cm2] λ [nm]

3.24 10−13 2.2 102 84.3

In Fig. 2 are displayed the RTD current–voltage characteristics obtained by means of
the three approximate formulas for θQ : the albedo approximation (2.45), the Marshak
approximation (2.47), and the Golse–Klar approximation (2.48). In this case, the classical–
quantum interfaces are placed exactely at the N+ − N and N − N+ junctions (500 and
620 nm). We observe that the Marshak and Golse–Klar approximations provide almost
the same values of θQ . On the other hand, the albedo approximation leads to significantly
different results. Since the Marshak and Golse–Klar formulae are the first iterations of a
(formally) convergent sequence of approximations, that they give the fact similar results
seems to be a good indication of their validity. Therefore, in the remainder of this section,
we use the Marshak approximation. We refer to this case as the basic test case.

A comparison with [33] shows that our results differ in several respects. First, in [33],
two current peaks are found in the current–voltage characteristic: a broad, flat one around
0.26 V and a narrow, sharp one around 0.32 V. We find only one peak around 0.25 V. Second,
our values of the current are a factor of 2 below those of [33]. This last difference can easily
be explained by the fact that our model is highly collisional (at least in the classical region)
while that in [33] is collisionless. However, there are other major differences between our
models, which can explain the different shapes of the current–voltage characteristics. In
[33], the authors compute the potential and the wave-function in a decoupled way: the
potential is first obtained via a Thomas–Fermi approximation of the density. Then, the

FIG. 2. Current–voltage characteristics obtained through the three approximations of the extrapolation
length θQ .
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FIG. 3. Current–voltage characteristics when the x2 interface is moved towards the left (from the basic case
x2 = 620 nm).

wave-functions, transmission coefficients, and eventually current are calculated by solving
the Schrödinger equation in this given potential. There is no retroaction of the quantum
calculation onto the potential shape. Our model instead is fully self-consistent. This may
explain the observed differences between the numerical results.

Now, we investigate the influence of the position of classical–quantum interfaces x1 and
x2 (cf. Figs. 3 to 6). These figures show that the results are quite insensitive to the position of
the right interface x2, but that the choice of the left interface x1 is crucial. In particular, this

FIG. 4. Current–voltage characteristics when the x2 interface is moved towards the right (from the basic case
x2 = 620 nm).
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FIG. 5. Current–voltage characteristics when the x1 interface is moved to the right (from the basic case
x1 = 500 nm).

interface cannot be chosen too close to the double barrier, otherwise the quantum resonances
of the potential in the quantum region are not properly taken into acount. On the other hand,
when the left interface is moved towards the source region, the results are not affected. The
insensitivity of the results to the position of the right interface is easily explained by the
fact that resonant particles are highly energetic in the drain region and therefore are equally
well described by a classical or a quantum model. This is also seen on the formulae for the
extrapolation constant, to which the major contributions are due to the right-going waves’
transmission coefficients.

FIG. 6. Current–voltage characteristics when the x1 interface is moved to the left (from the basic case
x1 = 500 nm).
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FIG. 7. Potential profile at the current peak bias (0.25 V).

Figure 7 displays the potential profile and Fig. 8 the carrier density profile for the volt-
age bias V = 0.25 V, corresponding to the current peak. The energy of the first resonance
is indicated by the dotted line. The transmission coefficient as a function of the energy
is shown in Fig. 9. In Fig. 9, the first transmission resonance appears with an energy
εr = V (x1) + 0.064 eV, and from Fig. 7, we have V (x1) = 0.023 eV, which provides the
resonant energy εr = 0.087 eV. It clearly appears that the resonant energy almost coincides
with the maximum Vmax of the potential in the region upstream from the double barrier (ap-
proximately located at x = 530 nm). For voltage biases V = 0.15 V or V = 0.28 V, which
are respectively lower and higher than the peak bias, the resonance energy is respectively
higher and lower than Vmax (see Figs. 11 and 12).

FIG. 8. Carrier density profile at the current peak bias (0.25 V).
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FIG. 9. Transmission probabilities for bias V = 0.25 V.

This observation is classical and can easily be interpreted as follows. The potential
maximum Vmax acts as a first filter on the transmitted particles: only those particles with
energy ε lower than Vmax can be transmitted. The distribution function of these parti-
cles is almost Maxwellian and therefore decreases exponentially as ε − Vmax increases.
Then, the double barrier is a second filter, which only allows particles whose energy ε

is equal to the transmission resonance energy εr to go through. The number of such par-
ticles is proportional to exp(− εr − Vmax

kT ) for εr > Vmax, and therefore, is maximal when

FIG. 10. Amplitude of the wave-function corresponding to the resonant energy εr = 0.087 eV (dotted curve)
and potential profile (solid curve).
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FIG. 11. Potential profile for bias V = 0.15 V.

εr = Vmax. When εr < Vmax, particles with a resonant energy εr first need to tunnel through
the potential barrier Vmax. Their number gets very small as soon as εr passes below Vmax.
This explains why the peak is observed when the transmission resonance energy coincides
with Vmax.

The density profile (Fig. 8) confirms that resonant particles actually tunnel through the first
barrier and occupy the potential well between the two barriers (cf. inset). This phenomenon
is also apparent on Fig. 10, which displays the wave-function corresponding to the resonant
energy. There is a large occupation probability in the well, illustrated by a sharp peak of
the wave-function. The other peaks from right to left are due to the broad potential well

FIG. 12. Potential profile for bias V = 0.28 V.
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FIG. 13. Extrapolation constant as a function of the applied bias.

upstream of the double barrier (also seen in [33]) and to the cladding layers (which result
in a discontinuity of the doping profile).

On Fig. 13, the curve representing the extrapolation constant as a function of the applied
bias is shown. A sharp variation of the extrapolation constant around the current peak bias
can be observed. It is a signature of the sharp variations of the transmission and reflection
probabilities at resonance.

We have reduced the width of the potential barriers and well up to 1 nm, while simulta-
neously increasing the height of the barriers up to 1 eV, without observing any convergence
problems or any kind of ill-behavior of the model. The results will be reported in future
work [18]. In our opinion, this is an indication of the robustness of the method, which proves
to be well suited to a wide variety of RTD designs.

Now, we would like to point out a limitation of the present model. Relaxation mechanisms
occurring in the quantum region, such as phonon collisions, are not taken into account.
However, they may contribute significantly to the physical process. Indeed, in the present

FIG. 14. The RTD geometry of [27].
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TABLE III

Physical Parameters for the Test Case of [27]

m ε1 ε2 H [eV] τ (s) T (K)

0.069 13.1 12.3 0.3 1.177 10−13 300

model, energy levels corresponding to the triangular potential well lying in front of the first
barrier can only be fed by tunneling, whereas in an actual device, collision mechanisms
may transfer a significant number of particles from higher energy states to these levels. At
certain values of the applied bias, the tunneling current associated with these states could be
larger than what the present model predicts. Therefore, a more accurate physical treatment
of the problem would have to account for relaxation mechanisms and would most likely
produce slightly different predictions for the transmission resonance and the peak bias. This
point will be investigated in future work [18].

Next, we investigate the RTD geometry of [27] (see Fig. 14). It is composed of a 5-nm
GaAs quantum well sandwiched between two 5-nm AlGaAs tunnel barriers. The double-
barrier heterostructure (DBH) is sandwiched between two thin cladding layers 5 nm wide
and two 495-nm-wide GaAs spacer layers. The DBH and the cladding layers are doped
at 1021 m−3 while the spacer layer is doped at 1024 m−3. The total length of the device is
L = 1015 nm. We note that the total length simulated in [27] was shorter (65 nm), but this
was probably due to numerical constraints.

The choice of physical constants is summarized in Table III (where H is the double-barrier
height).

Figure 15 shows the current–voltage characteristics obtained with a fixed position of the
second interface (x2 = 530 nm) and various choices for the first interface (x1 = 490 nm,
x1 = 480 nm, and x1 = 470 nm). Paradoxically, when the x1 interface is moved to the left

FIG. 15. Comparison of the current–voltage characteristics for the case of [27] with x1 = 490 nm (solid line),
x1 = 480 nm (dashed line), and x1 = 470 nm (dotted-dashed line in the inset). In these simulations, x2 = 530 nm.
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FIG. 16. Potential profiles for a voltage bias V = 0.28 V with the three choices of x1.

(and therefore, when the size of the quantum region is increased), the results deteriorate
dramatically. The results with x1 = 490 nm compare well with those of [27] which are
obtained via a numerical resolution of the relaxation-time Wigner equation. When x1 =
480 nm and when x1 = 470 nm, the peak-current reaches nonphysical values. This is easily
explained by looking at the potential curves (Fig. 16), which exhibit a nonphysical deepening
in the region upstream of the double barrier.

An interpretation of this behavior is found by considering the influence of collisions.
Indeed, our treatment of the quantum region is collisionless. Therefore, as the quantum
zone broadens, the treatment of collisions deteriorates. The nonphysical behavior of the
current–voltage characteristic can be linked to the fact that collisions are neglected in too
large a region of the device close to the double barrier. This interpretation is supported by the
observation made in [27] that, when the relaxation-time Wigner equation is replaced by a
conventional Schrödinger–Poisson solver (without any account of collisions), the potential
curves display a nonphysical deepening in the whole device region. The collisions are
essential to maintain the device close to a thermodynamical equilibruim. Neglecting them
in too large a region results in nonphysical behavior.

4. CONCLUSION

In this paper, we have investigated a methodology to couple drift–diffusion and quantum
models of electron transport in semiconductors in a one-dimensional stationary framework.
The coupling methodology follows from the theory of boundary layers. The model has been
numerically implemented and validated against two test cases in the literature. An adequate
choice of the positions of the interfaces between the classical and quantum regions leads to
good numerical results. The phenomena that affect the numerical results when the interfaces
are moved have been analyzed.

Extension of the present work to multidimensional situations and to time-dependent
problems is in progress [6].
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5. APPENDIX A

From Kinetic to Drift–Diffusion Models by the Diffusion Approximation

In this appendix, for the reader’s convenience, we provide the details that were omitted
in Section 2.3.1. The rigorous derivation of the drift–diffusion model from the Boltzmann
equation can be found in [25, 35] and other works. Formal derivations can be found in earlier
works (see, e.g., [14, 39]). Here, we stay at the level of the formal derivation. However,
we show that, formally, the drift–diffusion model is a second-order approximation of the
Boltzmann equation in terms of the scaled mean free path. This will turn to be important in
the next section for the obtention of the transmission conditions through the quantum zone.

We start with the properties of the collision operator Q (2.22). We note

σ(x, p) =
∫

R

S(x, p, p′)M(p′) dp′,

and we assume that there exist two positive constants σ1 and σ2 such that

0 < σ1 < σ(x, p) ≤ σ2, ∀(x, p) ∈ C × R.

We also assume that S(x, p, p′) > 0 for all (x, p, p′). Finally, we suppose that

Q( f )(−p) = Q( f̌ )(p), (5.1)

where f̌ (p) = f (−p). It is easy to show that (5.1) is equivalent to S(x, p, p′) =
S(x, −p, −p′). The collision operator Q operates on the p variable only. Therefore, we
introduce the space of square integrable functions of p for the measure M−1(p) dp,

X =
{

f :
∫

R

| f |2 M−1 dp < ∞
}
,

which is a Hilbert space when equipped with the inner product

〈 f, g〉X =
∫

R

f gM−1 dp.

We also introduce the projection operator � onto the Maxwellians:

(� f )(p) = 〈 f, M〉X M(p) =
( ∫

R

f (p) dp

)
M(p).

The following lemma [35] summarizes the properties of Q as an operator on X .

LEMMA 5.1.

(i) −Q is a bounded, self-adjoint, nonnegative operator on X.
(ii) Its null space N (Q) = { f ∈ X, Q( f ) = 0} is a one-dimensional vector space,

spanned by the Maxwellians:

N (Q) = {C M(p), C ∈ R}. (5.2)
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(iii) Its range R(Q) = {g ∈ X, ∃ f ∈ X such that Q( f ) = g} is characterized by

R(Q) = (N (Q))⊥, (5.3)

or

g ∈ R(Q) ⇔ �g = 0 ⇔
∫

R

g(p) dp = 0. (5.4)

(iv) Let g ∈ R(Q). Then, the function f ∈ X such that Q( f ) = g is unique if f
is constrained to satisfy � f = 0. We denote it f = Q−1(g). The space of solutions is
f + N (Q).

(v) Q−1(g) has the same parity as g (i.e., is even (respectively odd ) when g is even
(respectively odd )).

We now consider the Boltzmann equation (2.21). Diffusion limits for stationary problems
exhibit some pathologies. It is therefore easier to investigate a time-dependent problem or to
substitute the time derivative with a damping term λ f (with a constant damping coefficient
λ > 0), which can be viewed as the Laplace transform of it. Moreover, we are ultimately
interested in deriving the transmission conditions (2.15), (2.16) for which the presence of
this additional term is indifferent. Therefore, we consider a damped equation of the form

λ f + p

m

∂ f

∂x
+ e

dV

dx

∂ f

∂p
= Q( f ), x ∈ R, p ∈ R. (5.5)

We disregard the boundary conditions for the time being and consider the problem for
x ∈ R.

The diffusion approximation for evolution problems consists in looking at space scales
of order α−1 times the collision mean free path and at time scales of order α−2 times the
mean collision time. In the present stationary situation, it amounts to rescaling the problem
by changing λ into α2λ and x into x/α. Therefore, (5.5) becomes

λ f α + α−1

(
p

m

∂ f α

∂x
+ e

dV

dx

∂ f α

∂p

)
= α−2 Q( f α), x ∈ R, p ∈ R. (5.6)

In the following theorem, it is shown that in the limit α → 0, the solution of (5.6) converges
to that of the (damped) drift–diffusion model.

THEOREM 5.2 ( formal).

(i) f α tends to n(x, t)M when α → 0 where n satisfies the (damped) stationary drift–
diffusion model,

λn + d j

dx
= 0, (5.7)

j = −D(x)

(
dn

dx
− n

d

dx

(
V

Uth

))
, (5.8)

with D(x) > 0 given by (2.27).
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(ii) n is formally a second-order approximation of nα, i.e.,

nα − n = O(α2), nα(x, t) =
∫

R

f α(x, v) dv, (5.9)

(iii) We have the expansion

f α = f 0 + α f 1 + O(α2), f 0 = n(x, t)M(p), f 1 = �(p) j,

where � is given by (2.29).

Proof ( formal). We only give the main steps of this proof, which is classical. We borrow
this presentation from [15]. We introduce the Chapman–Enskog expansion

f α = f 0 + α f 1 + α2 f 2 + α3 f 3 + O(α4) =: f̃ α + O(α4), (5.10)

where the f i ’s are O(1) but may depend on α. This allows us to choose f 0 ∈ N (Q) and
f i ∈ N (Q)⊥ for i ≥ 1, or equivalently,

f 0(x, p, t) = n(x, t)M(p), (5.11)

where n may also depend on α and

� f i = 0, i = 1, 2. (5.12)

We calculate f i , i = 0, 3 in such a way that f̃ α satisfies (5.6) up to O(α2) terms, namely,

λ f α + α−1T ( f α) − α−2 Q( f α) = O(α2), T ( f ) = p

m

∂ f

∂x
+ e

dV

dx

∂ f

∂p
. (5.13)

We insert (5.10) in (5.13). Using (5.11) and (5.2), we are led to

α0((T − �T ) f 0 − Q f 1) + α1(λ(Id − �) f 0 + (T − �T ) f 1 − Q f 2)

+ α2(λ f 1 + T f 2 + α−1(λ� f 0 + �T f 1) + α−2�T f 0 − Q f 3) = O(α3), (5.14)

where Id stands for the identity operator. In (5.14), we have used the remark after Eq. (5.10)
and, for each term of the expansion, have subtracted its projection � and compensated it
by adding all these projections to the last term. Then, we set to 0 the various powers of α

in (5.14). We summarize the results.
The order α0 terms in (5.14) lead to (T − �T ) f 0 = Q f 1, which must be viewed as an

equation for f 1. By construction, the solvability condition (5.4) is satisfied. This equation
is easily solved and we find that f 1 is unique (in view of the constraint (5.12)) and given
by f 1 = �j with � given by (2.29) and j by (5.8). In passing, we check that � T f 0 = 0
because, f 0 being even, T f 0 is odd.

Since, by construction, (Id − �) f 0 = 0, the order α1 term leads to (T − �T ) f 1 = Q f 2,
which again, is a solvable equation for f 2. We easily find the unique solution (satisfying
(5.12))

f 2 = k1 ∂ j

∂x
+ k2 j,
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with

k1 = Q−1

(
p

m
� − M

)
, k2 = Q−1

(
p

m

∂�

∂x
+ e

dV

dx

∂�

∂p

)
.

The order α2 term yields an equation for f 3 for which we only check the solvability (to
guarantee the existence of f 3). Because � f 1 = 0 (by (5.12)) and � Tf 0 = 0 (by a remark
above), the solvability equation reduces to

λ� f 0 + � T f 1 + α� T f 2 = 0. (5.15)

Using Lemma 5.1 (v), we easily see that ki , i = 1, 2 are even. Therefore, T f 2 is odd and
� Tf 2 = 0. Easy computations lead to � f 0 = nM and �T f 1 = (∂ j/∂x)M . Therefore,
(5.15) reduces to (5.7).

Now, from (5.13), it is readily seen that f̃ α is formally an order α2 approximation of f α .
(One should not be confused by the order O(α4) remainder in (5.10).) In fact, this remainder
can only be proved of order α2 because of the α−2 term in the equation). Because � f i = 0
for i ≥ 1, (5.9) follows. The fact that D is positive is easily deduced from the nonnegativity
of −Q (see [35]).

6. APPENDIX B

Derivation of the Transmission Conditions for the Drift–Diffusion Model

In the present appendix, we consider the Boltzmann model (5.6) posed in the domain
C = C1 ∪ C2, C1 = (−∞, x1], C2 = [x2, +∞), together with the transmission conditions
(2.33), (2.34) connecting the values of f α at x1 and x2. We assume that the reflection–
transmission coefficients of the quantum zone are known. Our goal is to show that, in
order to maintain second-order accuracy in the diffusion approximation, the drift–diffusion
model must be supplemented with the transmission conditions (2.15), (2.16), which, after
rescaling, are written

j (x1) = j (x2) := j̄, (6.1)

n(x1)e
−V (x1)/Uth − n(x2)e

−V (x2)/Uth = αθQ j̄, (6.2)

with θQ as in Section 2.3. Since in the damped model the current may depend on x , we
introduce the notation j̄ to denote the common value (6.1). In the present analysis, we
disregard the treatment of the boundary conditions at x = 0 and x = L , which is classical
[3], and consider an infinite domain. The following approach mainly relies on [17] for its
theoretical background.

We insert the Chapman–Enskog expansion (5.10) in (2.33) and stop the expansion at
O(α2), since we are aiming at an approximation of this order. This means that we are
looking for f 0 and f 1 such that

B
(

f 0
1 , f 0

2

) + αB
(

f 1
1 , f 1

2

) = O(α2), (6.3)

where f 0
i , f 1

i denote the limit values of f 0 and f 1 when Ci � x → x1. Similarly, ni , ji ,
�i , . . . will denote the limit values of n, j , �, . . . .
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First, using the current-preservation property (2.36), the evenness of f 0 and f 2, and the
fact that

∫
�p/m dp = 1, we deduce from (6.3) that

j2 − j1 =
∫

R

f 1
2

p

m
dp −

∫
R

f 1
1

p

m
dp = O(α2).

Therefore, up to a term of order α2, we can impose the continuity of the current (6.1). We
now derive (6.2).

First, let us notice that, in view of the last remark in Section 2.3.2, B( f 0
1 , f 0

2 ) = 0 if and
only if n1 and n2 are linked through (2.37). The drift–diffusion model with transmission
conditions (6.1), (2.37) is well posed. So far, these conditions only lead to a first-order
approximation of the transmission conditions (2.33), since B( f̃ α

1 , f̃ α
2 ) = O(α). Addition-

ally, there is no influence of the quantum region on the classical region (apart from through
Poisson’s equation). This is why we are looking for an order α2 approximation.

Let us make it clear why (2.37) is not an order α2 approximation. By linearity, we have

B
(

f 1
1 , f 1

2

) = j̄B(�1, �2). (6.4)

In general, it is not true that B(�1, �2) = 0 (even when �1 = �2, which is the case as soon as
S(x1, p, p′) = S(x2, p, p′)). To overcome this problem, we must introduce an internal layer
corrector, based on the solution of the Milne problem (2.38), (2.39). For such a problem,
we can show a general statement:

THEOREM 6.1.

(i) Problem (2.38)–(2.39) with �i = 0, i = 1, 2 admits a one-dimensional space of
solutions consisting of

θi = Ci M on �i × R, (6.5)

where the two constants Ci are linked by (2.37).
(ii) When �i �= 0, problem (2.38)–(2.39) has a bounded solution iff �1 and �2 satisfy

the following flux conservation relation:∫
R

�1 p dp =
∫

R

�2 p dp. (6.6)

In this case, the solution is unique up to the addition of a solution of the form (6.5) of the
homogeneous problem.

(iii) θi has vanishing flux:∫
R

θi p dp = 0, ∀x ∈ �i . (6.7)

(iv) We have

θi → n∞
θi

M as x → (−1)i∞, (6.8)

where n∞
θi

is a constant and the convergence is exponentially fast. The constant

θ = e−V2/Uth n∞
θ2

− e−V1/Uth n∞
θ1

(6.9)
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does not depend on the choice of the solution and is uniquely determined by the data. It is
called the extrapolation constant.

The existence theory for half-space problems of kinetic theory can be found in [3]. The
theory of double-sided Milne problems such as (2.38)–(2.39) can be found in [17]. The
proof of Theorem 6.1 can easily be adapted from [17]. We summarize the most important
points of it at the end of this section. It is easy to check that (6.6) is satisfied for �i given by
(2.29) since

∫
�i (p)p dp/m = 1 by construction. Therefore, the existence and uniqueness

(up to the addition of a solution of the homogeneous problem) of the solution of the Milne
problem is guaranteed.

We are now able to prove:

THEOREM 6.2. Second-order transmission conditions for the drift–diffusion model
(5.7)–(5.8) are given by (6.1), (6.2).

Remark 6.1. A sufficient condition which guarantees that problem (5.7)–(5.8) with
transmission conditions (6.1), (6.2) is well posed is θQ > 0. Indeed, after some easy com-
putations, one obtains formally that

λ

( ∫ x1

−∞
+

∫ ∞

x2

)
1

2
|n(x)|2e−V/Uth dx + αθQ | j̄ |2

+
( ∫ x1

−∞
+

∫ ∞

x2

)
D

∣∣∣∣
(

∂x n − n∂x

(
V

Uth

))∣∣∣∣
2

e−V/Uth dx = 0.

If θQ > 0, all terms of the sum are positive, which allows us to apply the Lax–Milgram
theorem to find a solution. Details are left to the reader. The positivity of θQ can be proved
by means of a Darrozès Guiraud inequality (see [17]).

Proof of Theorem 6.2. From θi , we build the following internal layer corrector:

χα
i = − j̄

(
θα

i − n∞
θi

M
)
. (6.10)

Because of (2.38), (2.39), (6.8), χα
i satisfies the Boltzmann equation (5.6) up to terms of

order exp −(C |x − xi |/α) which are negligible away from a very tiny region about x1 or
x2. Furthermore, it satisfies the transmission condition, thanks to (6.4) and (2.39):

B
(

f 1
1 + χα

1 , f 1
2 + χα

2

) = j̄B
(
n∞

θ1
M, n∞

θ2
M

)
. (6.11)

Then, we modify the Chapman–Enskog expansion (5.10) slightly and write

f α = f 0 + α( f 1 + χα) + α2 f 2 + α3 f 3 + O(α4) =: f̄ α + O(α4). (6.12)

Inserting (6.12) in the Boltzmann equation (5.6) shows that f α is formally an approximate
solution of order O(α2 + α exp − (C(|x − x1| + |x − x2|)/α)) and stays O(α2) away from
a tiny region about [x1, x2].

Now, because of (6.11), f̄ α satisfies the following transmission conditions:

B
(

f̄ α
1 , f̄ α

2

) = B
(

f 0
1 , f 0

2

) + αB
((

f 1
1 + χα

1

)
,
(

f 1
2 + χα

2

)) + O(α2)

= B
((

n1 + α
(

j̄ n∞
θ1

))
M,

(
n2 + α

(
j̄ n∞

θ2

))
M

) + O(α2). (6.13)
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Therefore, in view of the last remark in Section 2.3.2, the second-order transmission con-
dition is written

(
n1 + α

(
j̄ n∞

θ1

))
e−V1/Uth − (

n2 + α
(

j̄ n∞
θ2

))
e−V2/Uth = 0, (6.14)

which can also be written according to (6.2), which concludes the proof.
We now sketch some points of the proof of Theorem 6.1.

Proof of Theorem 6.1 (sketch). First, suppose that θi is a bounded solution of (2.38)–
(2.39). Then, integrating (2.38) with respect to p leads to

∂x Ji (x) = 0, Ji (x) =
∫

R

θi
p

m
dp. (6.15)

Therefore, Ji (x) = Ji is a constant.
Using Green’s formula and the self-adjointness of Q, we observe that

∫
R

Q( f )hM−1 dp =
∫

R

f Q(h)M−1 dp = −
∫

R

f
p

m
dp.

Therefore, multiplying (2.38) by hM−1 and integrating with respect to p, we obtain

∂x ki + Ji = 0, ki (x) =
∫

R

p

m
θi h M−1 dp. (6.16)

Since we look for a bounded θi as x → (−1)i∞, ki must also stay bounded (provided there
is no integrability problem with respect to p), which implies

Ji (x) = 0, ki (x) = ki = constant, ∀x ∈ �i , (6.17)

and leads to point (iii). Given that the transmission condition (2.33) preserves the flux
through the quantum zone (2.36), we deduce that, for a bounded solution to exist, relation
(6.6) must hold. This explains the “only if” part of statement (ii).

Property (iv) is classical for Milne problems [3] and expresses the fact that away from
the quantum region the solution converges to an equilibrium. Parts (i) and the “if” part of
(ii) follow from the Fredholm techniques of [17]. Details are left to the reader.

For future use, we note that taking the limit x → (−1)i∞ and using (6.8), we have

ki = n∞
θi

Di , (6.18)

where Di = D(xi ). The following expression of θQ follows:

θQ = e−V2/Uth
k2

D2
− e−V1/Uth

k1

D1

= e−V2/Uth

∫
R

θ2 �2
p

m

dp

M
− e−V1/Uth

∫
R

θ1 �1
p

m

dp

M
. (6.19)
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7. APPENDIX C

Approximation of the Albedo Operator

Proof of formula (2.44). We first write the transmission condition (2.39) with the as-
sumption (2.43) according to

(
θ1(p) − n−

θ1
M(p)

) − (�1(p) − �1(−p))

= (
n−

θ2
e−δV/Uth − n−

θ1

)
T (−p)M(p) + T (−p)�1(−p)

− T (−p+(p))�2(−p+(p)), p < 0, (7.1)(
θ2(p) − n−

θ2
M(p)

) − (�2(p) − �2(−p))

= (
n−

θ1
− n−

θ2
e−δV/Uth

)
T (p−(p))M(p−(p)) + T (−p)�2(−p)

− T (p−(p))�1(p−(p)), p > pδ, (7.2)(
θ2(p) − n−

θ2
M(p)

) − (�2(p) − �2(−p)) = 0, 0 < p < pδ, (7.3)

where we have used the fact that M(p+(p)) = e−δV/Uth M(p) and M(p−(p)) =
eδV/Uth M(p). We note the relations

∫ 0

−∞

(
θ1 − n−

θ1
M(p)

)
p dp = 0,

∫ 0

−∞
(�1(p) − �1(−p))p dp =

∫
R

�1(p)p dp = m,

(7.4)

as well as the similar ones (with integration on [0, ∞)) for θ2 and �2. Moreover, using the
changes of variables p̄ = −p+(p) and p̄ = p−(p), we get the two relations

∫ 0

−∞
ϕ(−p+(p))p dp =

∫ −pδ

−∞
ϕ(p)p dp,

∫ ∞

pδ

ϕ(p−(p))p dp =
∫ ∞

0
ϕ(p)p dp, (7.5)

for any function ϕ.
Now, multiplying (7.1) by p/m, integrating with respect to p over (−∞, 0], and using

relations (7.4), (7.5), we obtain

n−
θ2

e−δV/Uth − n−
θ1

=
(∫ ∞

0
T M

p

m
dp

)−1 (
1 −

∫ ∞

0
[�1(p) + �2(p+(p))] T

p

m
dp

)
.

(7.6)

It is readily observed that using eqs. Eqs. (7.2) and (7.3) instead of (7.1) would lead to
the same result. Therefore, the approximate solution as well as the exact one is defined
uniquely up to the addition of Maxwellians ni M , the densities ni of which are related through
(2.37).

Now, with (2.43), we note that

k1

D1
=

∫ 0

−∞
�1θ1

p

m

dp

M
+ n−

θ1

2
,
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and similarly for k2/D2 with the integral on [0, ∞). We also note that the functions �i are
odd while �1 M−1 p/m are even. Therefore, multiplying (7.1) by �1 M−1 p/m and integrating
over (−∞, 0] yields

k1

D1
− n−

θ1
= −2

∫ ∞

0
(�1)

2 p

m

dp

M
+ (

n−
θ2

e−δV/Uth − n−
θ1

) ∫ ∞

0
�1 T

p

m
dp

+
∫ ∞

0
(�1)

2 T
p

m

dp

M
+

∫ ∞

0
�1(p) �2(p+(p)) T

p

m

dp

M
. (7.7)

Similarly, using (2.9), the change of variable p̄ = p+(p), and the oddness of �2, we get

k2

D2
− n−

θ2
= 2

∫ ∞

0
(�2)

2 p

m

dp

M
+ (

n−
θ1

− n−
θ2

e−δV/Uth
)
eδV/Uth

∫ ∞

0
�2(p+(p)) T

p

m
dp

− eδV/Uth

∫ ∞

0
(�2(p+(p)))2 T

p

m

dp

M
− eδV/Uth

∫ ∞

0
�2(p+(p)) �1(p) T

p

m

dp

M
.

(7.8)

Then, multiplying (7.8) by e−δV/Uth and substracting (7.7), we obtain

e−δV/Uth
k2

D2
− k1

D1
= (

n−
θ2

e−δV/Uth − n−
θ1

) (
1 −

∫ ∞

0
[�1(p) + �2(p+(p))] T

p

m
dp

)

+ 2
∫ ∞

0

(
(�2)

2e−δV/Uth + (�1)
2
) p

m

dp

M

−
∫ ∞

0
[�1(p) + �2(p+(p))]2 T

p

m

dp

M
. (7.9)

Then, inserting (7.6) into (7.9) and multiplying by e−V1/Uth leads to (2.44), by virtue of
(6.19).

Proof of the positivity of θ̄ Q (2.45). We can write θ̄ Q according to

θ̄ Q = e−V1/Uth

(∫ ∞

0
T M

p

m
dp

)−1 (
1 −

∫ ∞

0
[�1(p) + �2(p+(p))] T

p

m
dp

)2

+ 2
∫ pδ

0
(�2)

2e−V2/Uth
p

m

dp

M
+ e−V1/Uthζ,

with

ζ = 2
∫ ∞

0

(
(�2(p+(p)))2 + (�1(p))2

) p

m

dp

M
−

∫ ∞

0
[�1(p) + �2(p+(p))]2 T

p

m

dp

M
.

To prove that θ̄ Q > 0, it is enough to show that the ζ is nonnegative. This follows easily
from the facts that [�1(p) + �2(p+(p))]2 ≤ 2[�2(p+(p))2 + (�1(p))2] and T ≤ 1.
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8. APPENDIX D

8.1. Golse–Klar Iterations

Principle of the Method

We recall that we are looking for the solution (θ1, θ2) of the Milne problem (2.38), (2.39).
The solution such that θi M−1 is bounded is unique up to the addition of Maxwellians of
constant densities in each �i , related by (2.37). Furthermore, this solution has zero flux. In
this section, we specialize to the case of a constant transition rate (2.23), so that (2.38) is
written

p

m

∂θi

∂x
+ τ−1

i

(
θi − nθi M

) = 0, p ∈ R, x ∈ �i , (8.1)

where τi is the collision frequency in �i and nθ = ∫
θ(p) dp.

The first iteration consists in replacing problem (2.38), (2.39) by

p

m

∂θ1
i

∂x
+ τ−1

i

(
θ1

i − n1
i M

) = 0 (8.2)

B
(
θ1

1 (0, p) − �1(p), θ1
2 (0, p) − �2(p)

) = 0. (8.3)

θ1
i M−1 bounded on �i , (8.4)

n1
i constant on �i and such that

∫
R

θ1
i (0, p) p dp = 0. (8.5)

We note that if (θ1
i , n1

i )i=1,2 is a solution of (8.2), (8.5), then (θ1
i + Ci M, n1

i + Ci ), where Ci

are constants, is another solution if and only if the Ci are related by (2.37). It is easily shown
that problem (8.2), (8.5) has a unique solution modulo this transformation (see below).

Suppose that a (k − 1)-th order approximation has been constructed in the form of a
series θ1

i + θ2
i + · · · + θ k−1

i . Then, following Golse–Klar [24], we construct a k-th order
solution by solving the problem

p

m

∂θ k
i

∂x
+ τ−1

i

(
θ k

i − nk
i (x)M

) = −τ−1
i

(
nk−1

i (x) − nθ k−1
i

(x)
)
M (8.6)

∂2

∂x2
(Di n

k
i ) − τ−1

i

(
nk−1

i (x) − nθ k−1
i

(x)
) = 0, (8.7)

B
(
θ k

1 (0, p), θ k
2 (0, p)

) = 0. (8.8)

θ k
i M−1 bounded on �i , (8.9)

nk
i bounded on �i and lim

|x |→∞
nk

i := nk∞
i such that

∫
R

θ k
i (0, p) p dp = 0 . (8.10)

Again, it is easily seen that problem (8.6), (8.10) has a unique solution, modulo the addition
of a Maxwellian. The rationale for this method is that the density nthi in the collision
operator is replaced by its approximation by the diffusion equation (8.7) (which has a
constant solution at the first iteration). Then, a correction to this approximation is sought by
solving the next order iteration. It is clear that, if these iterations converge, they do converge
towards the solution of the Milne problem (2.38), (2.39). To our knowledge, the rigorous
proof of the convergence of these iterations is still an open problem.
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In this procedure, we are mostly interested in

ϑk =
(

e−δV/Uth n∞
θ k

2
− n∞

θ k
1

)
with lim

|x |→∞
θ k

i = n∞
θ k

i
M,

because, to the k-th order, θQ is approximated by:

θQ ≈ θ k
Q =

∑
k

(
e−V2/Uth n∞

θ k
2

− e−V1/Uth n∞
θ k

1

)
= e−V1/Uth

∑
k

ϑk .

Now, our aim is to explicitly compute the first and second iterates ϑ1 and ϑ2.

8.2. First Iteration

The explicit integration of (8.2) gives

θ1
1 (x, p) =




θ1+
1 (p)e− mx

τ1 p + n1
1 M

(
1 − e− mx

τ1 p
)
, x ≤ 0, p ≤ 0

n1
1 M, x ≤ 0, p ≥ 0,

(8.11)

where θ1±
1 (p) = θ1

1 (0, p) for ∓p ≥ 0. A similar formula is valid mutatis mutandis for θ1
2

in terms of θ1+
2 with θ1±

2 (p) = θ1
2 (0, p) for ±p ≥ 0.

The functions θ1+
i are determined by means of the transmission condition (8.3), which in

this case coincides with (7.1), (7.3) (changing n−
θi

into n1
i ). We know that the transmission

condition (8.3) implies
∫

θ1
i (0, p) pdp = ∫

θ1
2 (0, p) pdp. Therefore, to ensure (8.5), it is

enough to ensure that only one of the fluxes is zero, for instance that of θ1
1 . Therefore,

integrating (7.1) yields (7.6) (with, again, n−
θi

changed into n1
i ). Now, the asymptotic values

of θ1
i as |x | → ∞ are clearly given by n1

i . Therefore, (7.6) gives rise to formula (2.49) for
ϑ1. Stopping the iterations at this point would lead to the so-called Marshak approximation,
which is often considered too coarse.

8.3. Second Iteration

We now compute the second iterate (θ2
i , n2

i ). We obtain

θ2
1 (x, p)

=




θ2+
1 (p)e− mx

τ1 p + m
τ1 p M

∫ x
0 e− m(x−y)

τ1 p
(
n2

1 − (
n1

1 − nθ1
1

))
(y) dy, x ≤ 0, p ≤ 0

θ2−
1 (p)e− mx

τ1 p + m
τ1 p M

∫ x
0 e− m(x−y)

τ1 p
(
n2

1 − (
n1

1 − nθ1
1

))
(y) dy, x ≤ 0, p ≥ 0,

(8.12)

where θ2−
1 (p) is determined in a such a way that M−1θ2

1 is bounded on (−∞, 0]. A similar
formula is valid for θ2

2 on [0, ∞).
Now, we easily compute from (8.11),

(
n1

1 − nθ1
1

)
(x) = −

∫ 0

−∞

(
θ1+

1 (p) − n1
1 M(p)

)
e− mx

τ1 p dp, (8.13)

and bounded solutions of (8.7) are readily found—

n2
1 = n2∞

1 −
∫ 0

−∞

(
θ1+

1 (p) − n1
1 M(p)

) p2

p2
th

e− mx
τ1 p dp, (8.14)
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where the integration constant n2∞
1 will be determined later.

Inserting (8.13) and (8.14) into (8.12) leads to

θ2
1 (x, p)

=




θ2+
1 (p)e− mx

τ1 p + n2∞
1 M

(
1 − e− mx

τ1 p
) − M

∫ 0
−∞

(
θ1+

1 (p′) − n1
1 M(p′)

)
×( p′2

p2
th

− 1
)(

e
− mx

τ1 p′ − e− mx
τ1 p

) p′
p′−p dp′, x ≤ 0, p ≤ 0

n2∞
1 M − M

∫ 0
−∞

(
θ1+

1 (p′) − n1
1 M(p′)

)( p′2

p2
th

− 1
)
e
− mx

τ1 p′ p′
p′−p dp′, x ≤ 0, p ≥ 0.

(8.15)

In (8.15), for p ≥ 0, θ2−
1 has been eliminated by enforcing the boundedness constraint on

θ2
1 . A similar expression can be obtained, mutatis mutandis, for θ2

2 . We note that θ2
i tends

to n2∞
i M as |x | tends to ∞, so that ϑ2 is given by

ϑ2 = e−δV/Uth n2∞
2 − n2∞

1 . (8.16)

We are now going to apply (8.8), (8.10) in order to find ϑ2.
For that purpose, according to (8.15), we write

θ2−
1 (p) = n2∞

1 M − Mφ1, p > 0; θ2−
2 (p) = n2∞

2 M − Mφ2, p < 0, (8.17)

with

φ1(p) =
∫ ∞

0

(
θ1+

1 (−p′) − n1
1 M(p′)

)( p′2

p2
th

− 1

)
p′

p′ + p
dp′, p > 0, (8.18)

φ2(−p) =
∫ ∞

0

(
θ1+

2 (p′) − n1
2 M(p′)

)( p′2

p2
th

− 1

)
p′

p′ + p
dp′, p > 0. (8.19)

Because the transmission condition (8.8) is flux-preserving, in order to enforce condition
(8.10) for both functions θ2

i (0, p), it is enough to enforce it for only one of them, say
θ2

1 (0, p). Then, integrating the first line of (2.34) with respect to p dp and using (8.17)
leads to

ϑ2 =
(∫ ∞

0
T M

p

m
dp

)−1 ∫ ∞

0
T M

[
e−δV/Uthφ2(−p+(p)) − φ1(p)

] p

m
dp. (8.20)

We now compute φi . We again use the fact that the functions θ1+
i are determined by (7.1),

(7.3) (changing n−
θi

into n1
i ). Writing (7.1) in terms of −p′ instead of p, multiplying by

(p′2/p2
th − 1) p′/(p′ + p) and integrating with respect to p′ leads to

φ1(p) =
∫ ∞

0
{−2�1(p′) + ϑ1T (p′)M(p′) + T (p′)[�1(p′) + �2(p+(p′))]}

×
(

p′2

p2
th

− 1

)
p′

p′ + p
dp′, p > 0. (8.21)
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Similarly for φ2, using (7.2), (7.3) and the change of variables p′ = p+( p̄′), we get

φ2(−p+(p)) =
∫ ∞

0
{2�2(p+(p′)) − ϑ1T (p′)M(p′) − T (p′)[�1(p′) + �2(p+(p′))]}

×
(

p+(p′)2

p2
th

− 1

)
p′ dp′

p+(p′) + p+(p)

+
∫ pδ

0
2�2(p′)

(
p′2

p2
th

− 1

)
p′ dp′

p′ + p+(p)
, p > 0. (8.22)

By inserting (8.21) and (8.22), we deduce 2.50, which concludes the proof.
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